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Abstract

This work addresses the design and application
of robust controllers for structural acoustic control.
Both simulation and experimental results are pre-
sented. H∞ and µ-synthesis design methods were
used to design feedback controllers which minimize
power radiated from a panel while avoiding instabil-
ity due to unmodeled dynamics. Specifically, high-
order structural modes which couple strongly to the
actuator-sensor path were poorly modeled. This
model error was analytically bounded with an un-
certainty model, which allowed controllers to be de-
signed without artificial limits on control effort. It
is found that robust control methods provide the
control designer with physically meaningful param-
eters with which to tune control designs and can
be very useful in determining limits of performance.
Experimental results also showed, however, poor ro-
bustness properties for control designs with ad-hoc
uncertainty models. The importance of quantifying
and bounding model errors is discussed.
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Introduction

The goal of this work was to apply modern robust
control methods to a structural acoustic experiment,
and investigate the advantages of robust control in
this setting. Acoustic systems are often character-
ized by high modal density plants which extend well
into and even beyond the controller’s bandwidth.
Modern control methods, such as LQR/LQG, have
been successfully applied to the experimental control
of high-order, structural acoustic systems (Vipper-
man and Clark, 1997). However, when the plant
model is uncertain it is difficult to analytically de-
termine the limits of achievable performance. Con-
trollers must be designed with different levels of ag-
gressiveness and experimentally tested to determine
which will remain stable. Robust control offers the
potential to determine, based on uncertainty mod-
els, if a controller is likely to destabilize the plant
and to design optimal controllers which obtain per-
formance objectives while retaining stability in the
presence of model errors.

In modern control methods, such as LQR/LQG,
the performance objective and system constraints
are bundled into one cost function, for which an op-
timal system can be determined. These cost func-
tions and the resulting controllers, however, assume
accurate knowledge of the plant. In practice it is
necessary to bound control effort or to invoke fic-
titious noise sources in order to obtain an optimal
controller which is tolerant of model errors. Guide-
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lines have been developed, especially with regard to
estimator noise statistics (Maciejowski, 1989) that
help the control system designer find a suitable con-
troller which not only meets the system’s physical
constraints, but also is relatively insensitive to model
errors.

In robust control the goal is to incorporate the lack
of model fidelity directly into the design procedure,
and simultaneously optimize for performance and ro-
bustness. The mechanism for this involves the defi-
nition of an uncertainty model. Uncertainty models
are viewed as magnitude bounds, up to which the
plant is allowed to vary without affecting stability
of the closed loop system. These bounds may be de-
fined in a variety of ways, the simplest and most pop-
ular being unstructured uncertainty blocks. These
uncertainties can be multiplicative at the plant input
or output, or additive uncertainty around the plant.
The multiplicative uncertainties define a level of un-
known, but bounded coupling, among the system’s
inputs or outputs. Additive uncertainties are often
used to bound the effect of dynamics which exist in
the true system, but are not accounted for in the
plant model.

This paper reviews the development of uncer-
tainty models and motivates H∞/µ-synthesis de-
sign methods. The presentation is not rigorous
but rather tries to stress the physical interpreta-
tion and engineering significance of robustness prop-
erties. The work focuses on a structural acous-
tic experiment involving the transmission of sound
through a rectangular aluminum plate. The plate
model is finite and truncates a number of signifi-
cant high-order modes. These high-order dynamics
are then bounded by an additive uncertainty model.
Determination of an appropriate uncertainty model,
the control design, and experimental tests are cov-
ered in the sections which follow.

Robust Stability

Robust control methods seek to find controllers
that obtain required performance but are not sen-
sitive to changes in the plant. In classical design
methods robustness considerations can be handled
heuristically by imposing design guidelines. For ex-
ample, using a compensator to obtain pole-zero can-
cellation is not recommended for lightly damped sys-
tems. Gain and phase margins also provide good in-
dicators of how sensitive a compensator is to model
errors. However, in multiple-input multiple-output
(MIMO) systems the designer has considerable free-
dom, and typically applies optimization techniques
to obtain the control laws.

Robust controllers guarantee stability not only for
a nominal plant model but also a set of possible
plants defined by an uncertainty model. The sim-
plest way to understand how the plant/uncertainty
models interact is through a block diagram. Con-
sider the block diagram shown in Figure 1. The
nominal plant model, P (s), has a controller K(s),
an uncertainty model Wa(s), and the perturbation
∆(s).
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Figure 1: Nominal Plant with Additive Uncertainty
Model

The perturbation ∆(s) defines the model varia-
tions, however it is not known explicitly. All that
is known of the perturbation is that its infinity
norm is bounded to be strictly less than unity, i.e.
||∆(s)||∞ < 1. The infinity norm is sometimes re-
ferred to as an RMS gain norm. Both the input and
output of ∆(s) are vectors, so gains across ∆(s) are
defined as the ratio of vector two-norms, or RMS
gains. The infinity norm is a single number which
represents the largest RMS gain over all frequencies
and over all input/output directions. The interpre-
tation of signal and system norms is key to under-
standing robust control, and an excellent review can
be found in Boyd and Barratt, (1991).

The uncertainty model Wa(s) is used to scale the
effects of ∆(s) and define bounds up to which the
model may vary. This system represents a path in
parallel with the plant model. It is often used to
bound high-order dynamics of the true plant which
are difficult to include accurately in the plant model.
Although the phase response of this system is arbi-
trary its magnitude response must be scaled appro-
priately with the actual plant model.

A controller which has the property of robust sta-
bility is one which will remain stable for all ∆(s),
and therefore all plant variations which are covered
by the uncertainty model Wa(s). The key to accom-
plishing this lies in the small gain theorem which
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states that a system will remain stable under closed
loop conditions if

||L(jw)||∞ < 1 ∀ ω (1)

where ‖L(s)‖∞ is the loop transfer function. To de-
termine if a controller K(s) has robust stability one
simply examines the closed loop transfer function
from the output of ∆ to its input. This system, Pvq,
can be viewed as one part of the loop gain, the re-
maining being the unknown perturbation set ∆(s).
Although the explicit function ∆(s) is unknown, by
definition it is bounded by ||∆(s)||∞ < 1. From the
triangle inequality we have,

‖L(s)‖ = ‖Pvq(s)∆(s)‖ ≤ ‖Pvq‖ · ‖∆(s)‖ (2)

where ‖ · ‖ denotes the maximum singular value at
each frequency. This implies that if the norm of the
transfer function Pvq is less than one, the loop gain
will be less than one, and thus the system will remain
stable for all possible ∆(s). This is the condition
for robust stability and can be interpreted as saying
that the true system can have unmodeled dynamics
of arbitrary order and arbitrary coupling up to the
magnitude of Wa(s), and the closed loop system will
remain stable with controller K(s).

Robust Performance

Satisfying the conditions for robust stability, how-
ever, says nothing about the performance of the sys-
tem. Performance may degrade rapidly with small
variations from the plant model even though the con-
troller is still robust. Indeed, without a separate
specification on performance the controller may do
nothing at all. For unstable plants controllers can
be designed based solely on robustness constraints,
however, with stable plants the most robust con-
troller typically has zero gain. This motivates mod-
ifying the robust control problem to include some
measure of performance.

Our interest here is a disturbance rejection prob-
lem, which is to minimize the transfer function
from a disturbance source to a performance out-
put. This is the path Ppd, shown in Figure 1. Often
in the literature the performance output is consid-
ered measurable, and hence corresponds to the out-
put y. This has the advantage of allowing perfor-
mance/robustness tradeoffs to be interpreted from
the sensitivity and complementary sensitivity func-
tions of the of the system. Here, however, the per-
formance output is acoustic power radiated into an
infinite half-space which can be predicted but not

measured. The incorporation of this output into the
system model is covered in detail in the next section.

The fully augmented system can be viewed as the
standard three port model shown in Figure 2. The
augmented plant T has separate inputs for pertur-
bations q, disturbance source d, and control signals
u. It has separate outputs for perturbations v, per-
formance p, and sensor signals y. The bounded sys-
tem ∆(s) closes the upper loop and represents un-
certainty in the plant model, and the feedback con-
troller K(s) closes the lower loop. Nominal perfor-
mance is defined as ||Tpd||∞, with K(s) closed but
∆(s) = 0. This is the the norm of the transfer func-
tion from disturbance to total radiated power when
the system model is accurate, i.e. the nominal sys-
tem model.

∆(s)

d

K(s)

T
Augmented Plant

w

yu
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Figure 2: Generalized Plant Model, with grouped
uncertainty and performance paths

To achieve robust performance it is necessary to
simultaneously minimize the Tvq, the robustness
transfer function and Tpd, the performance trans-
fer function. The most straightforward approach is
to consider all the respective inputs and outputs si-
multaneously, i.e. find K(s) which minimizes

||Tzw||∞ =

∣∣∣∣∣
∣∣∣∣∣ Tvq Tvd

Tpq Tpd

∣∣∣∣∣
∣∣∣∣∣
∞

(3)

This is the optimal H∞ problem. Although it is
not straightforward to directly find the optimal con-
troller, numerical methods exist to find a suboptimal
K(s) which satisfies Tzw < γ for some real constant
γ (Doyle et al., 1989). The optimal H∞ controller
is then found through an iterative line-search which
finds the lowest γ for which a stabilizing controller
exists.

Scaling is important to the H∞ problem. If γ is
greater than one the controller does not provide sta-
bility guarantees and either the performance weight
or the uncertainty weight must be decreased. If γ
is much smaller than one it is likely that required
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performance specifications could be increased and
robustness still satisfied.

Stacking the transfer functions into Tzw, as done
in equation 3 provides a conservative guarantee on
the underlying constraints. This is because it also
bounds gains Tpq and Tvd which exist but have no
robustness or performance interpretations. Robust
performance is actually achieved if the performance
constraint is met for all possible plant variations, ie

‖Tpd‖∞ ≤ 1 ∀ ∆(s) ∈ ∆ (4)

Clearly, it is not possible to test this condition for
all possible ∆(s) in the allowed uncertainty struc-
ture ∆. However, this condition can be guaranteed
by assuring,

µ∆̂(Tzw) < 1 ∀ ω (5)

A proper development of µ is beyond the scope of
this paper, but it is well documented and good pre-
sentations exist in Skogestad et al. (1996), and Balas
et al. (1995). Conceptually, µ is similar to the infin-
ity norm (although it does not satisfy the conditions
of a norm) and is often called the structured singular
value. It allows a singular value calculation to occur
where the system of interest has structure, defined
by ∆. Although it is difficult to calculate µ directly,
a reasonably tight upper bound is given by

µ∆(M) ≤ InfD(ω)∈D σ̄
(
D(ω)M(jω)D−1(ω)

)
(6)

where D is the set of all D which commute with
∆. In fact, in the work presented here ∆ has only
two full blocks and the equality sign holds in equa-
tion (6). This function will yield a norm which is
lower than the norm of Tzw, yet it can be shown to
provide the same stability guarantees as the original.
Calculation of µ is useful for problems with com-
bined robustness and performance specifications, as
well as problems that have more complex uncer-
tainty structures.

The design of controllers which seek to optimize
robust performance is called µ-synthesis. Numeri-
cally, it involves placing an iterative loop around the
H∞ solver which determines the best D scaling for
a given controller K, then reposes a weighted H∞
problem. This optimization, known as D-K itera-
tions, is not convex and not guaranteed to converge,
however, it has been successfully applied in a large
number of practical problems. The process puts D-
K iterations around the H∞ solver’s γ-iterations,
which leads to a significant computational burden
and adds states to the controller due to curve fitting
of D(ω). The controllers described in this paper

were all designed with µ-synthesis, using routines
available in the Matlab µ-tools toolbox (Balas et al.,
1995).

Structural Acoustic Control

The system under study is an aluminum panel, in-
strumented with piezoelectric actuators and sensors,
and mounted in a transmission-loss facility. The
physical setup is discussed in more detail in the Ex-
perimental Structure section.

Although piezoelectric patches are the only sen-
sors in the system, out-of-plane velocities from any
point on the plate can be measured with a laser ve-
locimeter. The laser system is configured to take
data from a rectangular grid of points on the panel.
These measurements must be made sequentially, and
are not available for feedback. However, data from
the laser is available for system identification, and
the entire array of velocity points are outputs of the
empirically derived model.

The goal is to attenuate acoustic transmission
through a panel. Acoustic power can be predicted
by considering the radiation efficiency of each of the
structure’s modes, and building a system which ef-
fectively transforms the modal velocities into radi-
ation modes (Cunefare, 1991). This transformation
can then be realized in a system model by build-
ing filters of arbitrary phase whose squared ampli-
tudes match the radiation efficiency of each struc-
tural mode. Using this system, total radiated power
can be derived from the model outputs and included
as a performance output for control design (Bau-
mann, 1991).

In the following work a slightly different method
was employed. Following the development in of El-
liot and Johnson (1993) radiation efficiencies were
calculated based on a discretized form of Rayleigh’s
Integral. Total acoustic radiation was computed
from an array of ideal monopole point sources. This
has the advantage of being independent of the sys-
tem model and only requiring a grid of velocity mea-
surements to predict acoustic radiation. Specifically,
the total power radiated from a baffled panel into a
half-space, P̄ , is given by,

P̄ = vH(jw)R(jw)v(jw) (7)

where v is an m× 1 vector of panel velocities and R
is a real symmetric radiation matrix. The radiation
matrix, R, can be determined analytically, however
for use in control design it must be decomposed into
a physically realizable system, Wr , such that

R(jw) = WH
r (jw)Wr(jw) (8)
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Note that this relation leaves the phase of Wr arbi-
trary and therefore the system Wr(s) can be found
through spectral factorization.

In this work the radiation efficiencies R(jw) were
not fit directly since for a grid of n points this re-
quires n2 independent fits and leads to unreason-
able system order. Instead the radiation matrix
was factored into an ordered set of radiation modes
via a singular value decomposition. The first few
modes were curve fit, then used as basis functions
for interpolation of the original full radiation matrix.
This technique, termed Radiation Modal Expansion
(RME), is detailed in Clark et al. (1997) and Gibbs
et al. (1997) and based on the nesting property of
radiation modes as described in Borgiotti (1994).

System and Uncertainty Identification

System Identification was performed using the ob-
server identification methods available in the SOCIT
matlab toolbox (Juang et al. 1992). This is a time
domain approach which calculates Markov parame-
ters from arbitrary input-output data, uses this data
to form a Hankel matrix for the optimal observer and
from this realizes a state space model for the system.

Inputs to the system were random pink noise
which had been frequency weighted with a low pass
filter in order to increase the excitation at low fre-
quencies. This was found to be necessary because
the piezo to piezo transfer functions tend to increase
with frequency throughout the bandwidth of inter-
est. Using pink noise gave output signals which were
near the system’s noise floor at low frequencies and
yielded models with poor fidelity.

The system to be identified had 5 inputs: the
disturbance speaker and four piezoelectric actua-
tors, and 24 outputs: the grid of 20 velocity mea-
surements and 4 piezoelectric sensors. It was not
possible to obtain low-order models which had sat-
isfactory accuracy. In part this was because the
identification method attempts to preserve parts of
the model which are significant to the input/output
mapping. Similarly, doing balanced model reduction
of high-order models tended to remove low frequency
modes from the system model. Although this pre-
serves a large portion of the system’s response, it is
at odds with the cost function, which is dominated
by low frequency modes. Increasing the input signal
at low frequencies improved the accuracy in these
models, but doesn’t increase their level relative to
the high-order response.

A 200th order model for the system was realized
which provided reasonable accuracy, both in match-
ing frequency domain responses as taken experimen-

tally from a spectrum analyzer and in matching time
histories from input/output data sets not used in the
identification process. The Nyquist rate of the dig-
ital system was 1800 Hz, however, it was only of
interest to control the system up to around 1000Hz.
Therefore the 200th order model was decomposed
into slow and fast portions, with the slow model
containing dynamics up to 1000 Hz and the fast
model above this. This yielded a model with 90
states which contained an accurate system model up
to 1000Hz, and a very poor model above these fre-
quencies.

To compensate for the system model inaccuracies
at high frequencies a low-order uncertainty model
was designed which would bound the high-order dy-
namics. Figure 3 shows the maximum and minimum
singular values of Tyu, the plant model from actuator
to sensor, in solid and dotted lines respectively. The
dashed line in Figure 3 is the maximum singular val-
ues as calculated from the 4 by 4 transfer matrices in
the experimentally determined spectrum, Tyu. The
model response matches the spectra well up to about
1000 Hz, where the model rolls off. An uncertainty
model, Wa(s) was defined which followed along the
minimum singular values within the bandwidth of
the model then increased to bound the unmodeled
dynamics above 1000 Hz. The gain of the uncer-
tainty model is shown in Figure 3 with the dash-dot
lines. The uncertainty model also ramped up below
the first mode to bound model errors at low frequen-
cies. No parametric uncertainties were included in
the design model.
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Experimental Structure

The structure under study is a 14”x10” aluminum
panel, clamped on all sides and mounted in the
Transmission-Loss Facility at NASA Langley Re-
search Center. Four ceramic piezoelectric patches
are mounted on one side of the panel. These devices
are configured as sensoriactuators, which can pro-
vide both actuation and sensing. An adaptive algo-
rithm actively adjusts reference circuitry so that the
piezoelectrics can accurately sense vibrations while
simultaneously being used as actuators. Theory be-
hind the sensoriactuator design can be found in Cole
and Clark, (1994) and details of its implementation
are described in Vipperman and Clark (1996).

Wideband disturbances are created with a loud-
speaker. In a separate semi-anechoic room, micro-
phone data was available and used for testing; how-
ever, final acoustic predictions are based on mea-
surements from a scanning laser Doppler velocime-
ter. This information more accurately reflects the
controllers design goals, and provides a better mea-
surement of total radiated power. A schematic of
the experimental setup is shown in Figure 4
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Figure 4: Experimental Setup

The real-time code was implemented in a TMS-
C40 digital signal processor. It implements a state
space controller code for the 4-input 4-output sen-
sor to actuator system and an LMS adaptive algo-
rithm for the sensoriactuators’ compensation. This
adaptive compensation for the sensoriactuator cir-
cuitry requires an additional four channels of input
and output voltages. For efficiency the controller
only implements tridiagonal system matrices, so all
controllers were transformed into modal coordinates
prior to implementation. Care was taken to elimi-
nate interchannel delays and minimize input-output
delays, in order to approximate feed-through dy-
namics of the compensator.

Anti-aliasing filters were applied at 1600 Hz, and

smoothing filters were applied to the digital to ana-
log signals at 3200 Hz. The system identification
time records were recorded on the DSP and so con-
tained these filters as part of the discrete plant
model.

Experimental Results

Previous control experiments on this setup had
shown that stable controllers used only a small range
of the authority available from the piezoelectric ac-
tuators. Furthermore, although some noise was
present on the measurements, anti-aliasing filters re-
moved much of this and sensor signals were relatively
clean. The control design process, therefore, did not
include any penalty on control effort or any distur-
bance inputs representing sensor noise. The goals
were simply to minimize the disturbance to perfor-
mance path while providing a system which would
remain stable for all dynamics bounded by the un-
certainty model. This yielded a set of control laws
which could be parameterized by a single design fac-
tor, the performance weight. Since the performance
was the prediction of acoustically radiated power, no
additional frequency weightings were applied.

Several controllers were designed, with various
levels of performance weight. For each case µ-
synthesis was applied for four D-K iterations, where
further improvements in the value of µ were small.
The controller parameters, intermediate and final
values of µ and σ̄(Tvq) are shown in Table 1. The
columns I1 through I4 of this table show the results
after each of the four D-K iterations. These results
predict that the final converged controllers of de-
sign C1 and C2 should be stable and C3 on the bor-
der of stability. The control designs C4 and C5 do
not exhibit robust stability, and may be beyond the
boundary of achievable performance.

When the designs were run experimentally, how-
ever, it was found that none of the five controllers
were stable. The instability was not a high fre-
quency mode, but stemmed from growing oscilla-
tions of modes well within the bandwidth of the sys-
tem model. The cause of this instability is the rel-
atively low uncertainty within this bandwidth, and
the lack of other terms in the cost function which
would restrain the control effort. As an attempt to
counter this, flat multiplicative uncertainties were
added at the input and output of the plant. Through
experimental iteration, however, it was found that
these uncertainties yielded controllers which were ei-
ther overly conservative, or unstable. Given the sys-
tem size this kind of iteration was very time consum-
ing, taking several hours per controller on an Ultra-
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Control Perf. Robust Performance, µ

Law Weight I1 I2 I3 I4

C1 5 4.76 1.02 0.75 0.74

C2 7 7.14 1.41 0.95 0.90

C3 10 9.52 1.94 1.24 1.10

C4 12 11.89 2.33 1.42 1.23

C5 15 14.28 3.00 1.65 1.40

Robust Stability, σ̄(Tvq)

I1 I2 I3 I4

C1 5 0.15 0.48 0.73 0.73

C2 7 0.14 0.50 0.76 0.88

C3 10 0.23 0.57 0.80 1.08

C4 12 0.20 0.59 0.85 1.20

C5 15 0.29 0.60 0.95 1.36

Table 1: Stablility and performance measures

Sparc. More significantly, however, this cut-and-try
design method is exactly counter to the motivation
for applying robust control. The objective of robust
analysis is to have analytic predictions which indi-
cate when a system’s simulated performance is likely
to be unobtainable in practice. Properly applied it
should have physically motivated parameters which
can be determined from system identification, and
used to reduce the number of design/experiment it-
erations.

The optimal controller will use all available in-
formation about the plant to obtain performance
and maintain stability against uncertainties. The
µ values shown in Table 1 indicate that not much
performance difference exists between the final con-
troller and the next-to-last iteration. Viewing µ as
a function of frequency, however, yields quite a dif-
ferent picture. Figures 5 and 6 show the open-loop
performance, nominal performance, and robust per-
formance (µ), for the third and fourth iterations of
controller five, C5-I3 and C5-I4 respectively. In iter-
ation 3, shown in Figure 5, the robust performance
is degraded from the nominal as expected, but oth-
erwise looks very similar. In iteration four, shown
in Figure 6 the value of µ is nearly flat, and dif-
fers greatly from the nominal performance. This in-
dicates a major change in the system output with
perturbations. Controller C5-I4 is considered an im-
provement on C5-I3 because its peak value of µ over
all frequency is is smaller. From a practical perspec-
tive, however, the third iteration produced a con-
troller for which the system output does not vary
as dramatically with perturbations, and using this
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Figure 5: Open-Loop, Nominal Performance, and
Robust Performance, with controller C5-I3
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Figure 6: Open-Loop, Nominal Performance, and
Robust Performance, with controller C5-I4

ad-hoc measure of robustness, this sub-optimal con-
troller is clearly preferred.

The control laws in Table 1 were again imple-
mented experimentally, this time using the second
to last iteration. All of these controllers were sta-
ble and provided good performance, with controller
C5-I3 providing the largest reduction. For this con-
troller the total acoustic energy transmitted through
the panel was calculated from a grid of 63 laser ve-
locity measurements. This grid is twice the density
of that used for prediction in the control law de-
sign. The speaker was driven by a pink noise source
which was band-limited to 800 Hz. Both open loop
and closed loop measurements were taken, and a 7db
reduction in total radiated power was achieved. The
open and closed loop power predictions are shown in
Figure 7 and the reduction in acoustic transmission
over third octave bands is shown in Figure 8.
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Figure 8: Reduction in radiated sound power over
third octave bands with controller C5-I3

Conclusions

This work examined the active control of a struc-
tural panel subject to acoustic disturbances. The
objective of the control law was to reduce acous-
tic transmission through the panel, while maintain-
ing stability in the presence of unmodeled dynam-
ics. Piezoelectric adaptive sensoriactuators were em-
ployed as sensors and actuators in the system. The
performance output of the system was the predic-
tion of acoustic power radiation into a half-space.
The identified system model contained a grid of ve-
locity points on the panel, and were obtained from
a laser velocimeter system. Predictions of radiated
power were made by assuming each velocity point
represented an acoustic monopole and fitting the ra-
diation efficiency of these monopoles with realizable
frequency domain functions.

The goal of this work was to examine the applica-

bility of robust control methods to structural acous-
tic control experiments and gain insight from exper-
imental implementation. Only frequency weighted
uncertainties were considered, not parametric. It
was found that uncertainty models are the criti-
cal parameter in determining the utility of robust
control. Designs based on ad-hoc uncertainty mod-
els yielded poor performance, and more significantly
had poor correlation between predictions of instabil-
ity, based on large values of µ, and actual instability
seen in the lab.

The use of physically motivated uncertainty mod-
els, however, was found to yield good results. The
explicit prediction of performance limitations is one
of the most significant features of robust control
and not available with other multivariable control
methods. Robust control, despite its computational
and theoretical complexities, provides the control
designer with tuning parameters which are physi-
cally meaningful and can reduce experimental itera-
tions on designs.

It was also found that using µ synthesis sub-
optimal controllers proved to be better in practice
than their optimal counterparts. Partly this is be-
cause, in the work presented here, the two-norm is
a better measure of desired performance than the
infinity norm. A more significant observation, how-
ever, is that optimal controllers tended to be actively
constrained by the uncertainty model and thus very
dependent on the form of this model. Since uncer-
tainty models are generally just overbounds based
on physical observations, it is often not useful, and
can be detrimental, to extensively optimize against
these bounds.

References

[1] Balas, G.J., Doyle, J. D., Glover, K., Packard,
A. K., and Smith, R., µ-Analysis and Synthesis
Toolbox, MUSYN Inc., Minneapolis, 1995.

[2] Baumann, W. T., W. R. Saunders, and H. H.
Robertshaw, “Active suppression of acoustic ra-
diation from impulsively excited structures,”
Journal of the Acoustical Society of America,
90(6), 3202-3208, (1991).

[3] Borgiotti, G. V., and Jones, K. E., 1994. “Fre-
quency independence property of radiation spa-
tial filters” Journal of the Acoustical Society of
America, 96(6), pp. 3516-3524.

[4] Boyd, S., and C. Barratt, Linear Controller De-
sign: Limits of Performance, Prentice Hall, En-
glewood Cliffs, NJ, (1991).

8



[5] Clark, R. L., Saunders, W. R., and Gibbs, G.P.,
1997. Adaptive Structures: Dynamics and Con-
trol, John Wiley & Sons, New York.

[6] Cole, D. G., and Clark, R. L., 1994. Adap-
tive Compensation of Piezoelectric Sensoriactu-
ators”, Journal of Intelligent Material Systems
and Structures 5, pp. 665-672.

[7] Cunefare, K. A., “The Minimum Multimodal
Radiation Efficiency of Baffled Finite Beams,”
Journal of the Acoustical Society of America,
90(5), 2521-2529, (1991).

[8] Doyle, J.C., Glover, K., Khargonekar, P., and
Francis, B., “State-space Solutions to Standard
H2 and H∞ Control Problems,” IEEE Trans.
on Auto Control, Vol.34, No.8, August 1989.

[9] Elliott, Sl J., and Johnson, M. E.1993 “Radi-
ation modes and the active control of sound
power”, Journal of the Acoustical Society of
America, 94(4) pp. 2194-2204.

[10] Gibbs, G. P., Clark, R. L., Cox D. E., and Vip-
perman, J. S., 1997. “Radiation Modal Expan-
sion for Active Structural Acoustic Control”,
submitted to AIAA Journal.

[11] Juang, J. , Horta, L. G. and Phan, M. “Sys-
tem/observer/controller identification toolbox”
NASA-TM-107566, (1992).

[12] Maciejowski,J. M., 1989 Multivariable Feedback
Design, Addison Wesley, New York.

[13] Skogestad, S., and Postlethwaite, I., Multivari-
able Feedback Control, John Wiley & Sons, New
York, NY, (1996).

[14] Vipperman, J. S. and Clark, R. L., 1996. “Im-
plementations of an Adaptive Peizoelectric Sen-
soriactuator”, AIAA Journal, 34(10), pp. 2102-
2109.

[15] Vipperman,J. S., and Clark, R. L., 1997. “Mul-
tivariable feedback active structural acoustic
control with adaptive piezoelectric sensoriactu-
ators”, sumbitted to Journal of the Acoustical
Society of America.

9


